Iwasawa Theory of Elliptic Curves at Supersingular Primes over Zp-extensions of Number Fields

نویسندگان

  • Adrian Iovita
  • Robert Pollack
چکیده

In this paper, we make a study of the Iwasawa theory of an elliptic curve at a supersingular prime p along an arbitrary Zp-extension of a number field K in the case when p splits completely in K. Generalizing work of Kobayashi [9] and Perrin-Riou [17], we define restricted Selmer groups and λ±, μ±-invariants; we then derive asymptotic formulas describing the growth of the Selmer group in terms of these invariants. To be able to work with non-cyclotomic Zp-extensions, a new local result is proven that gives a complete description of the formal group of an elliptic curve at a supersingular prime along any ramified Zp-extension of Qp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 2 N ov 2 00 4 Iwasawa Theory of Elliptic Curves at Supersingular Primes over Z p - extensions of Number Fields

In this paper, we make a study of the Iwasawa theory of an elliptic curve at a supersingular prime p along an arbitrary Zp-extension of a number field K in the case when p splits completely in K. Generalizing work of Kobayashi [8] and Perrin-Riou [16], we define restricted Selmer groups and λ ± , µ ±-invariants; we then derive asymptotic formulas describing the growth of the Selmer group in ter...

متن کامل

The main conjecture of Iwasawa theory for elliptic curves with complex multiplication over abelian extensions at supersingular primes

We develop the plus/minus p-Selmer group theory and plus/minus padic L-function theory for an elliptic curve E with complex multiplication over an abelian extension F of the imaginary quadratic field K given by the complex multiplication of E when p is a prime inert over K/Q (i.e. supersingular). As a result, we prove that the characteristic ideal of the Pontryagin dual of the plus/minus p-Selm...

متن کامل

Plus/minus Heegner Points and Iwasawa Theory of Elliptic Curves at Supersingular Primes

Let E be an elliptic curve over Q and let p ≥ 5 be a prime of good supersingular reduction for E. Let K be an imaginary quadratic field satisfying a modified “Heegner hypothesis” in which p splits, write K∞ for the anticyclotomic Zp-extension of K and let Λ denote the Iwasawa algebra of K∞/K. By extending to the supersingular case the Λ-adic Kolyvagin method originally developed by Bertolini in...

متن کامل

The anticyclotomic Main Conjecture for elliptic curves at supersingular primes

The Main Conjecture of Iwasawa theory for an elliptic curve E over Q and the anticyclotomic Zp-extension of an imaginary quadratic field K was studied in [BD2], in the case where p is a prime of ordinary reduction for E. Analogous results are formulated, and proved, in the case where p is a prime of supersingular reduction. The foundational study of supersingular main conjectures carried out by...

متن کامل

Iwasawa Theory of Zp-Extensions over Global Function Fields

In this paper we study the Iwasawa theory of Zp-extensions of global function fields k over finite fields of characteristic p. When d = 1 we first show that Iwasawa invariants are well defined under the assumption that only finitely many primes are ramified in the extension, then we prove that the Iwasawa μ-invariant can be arbitrarily large for some extension of any given base field k. After g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005